

Consumer Confidence Report for Calendar Year 2019

Este informe contiene informactión muy importante sobre el aqua usted bebe. Tradúscalo ó hable con alguien que lo entienda bien.

Public Water System ID Number	Public Water System Name				
AZ04-20-487	Rio Vista Mo	Rio Vista Mobile Home Park			
Contact Name and Title		Phone Number	E-mail Address		
Tamsin Sailors		520-795-4598	riovistatucson@gmail.com		

We want our valued customers to be informed about their water quality. If you would like to learn more about public participation or to attend any of our regularly scheduled meetings, please contact Rick or <u>Tamsin Sailors</u> at 520-795-4598 for additional opportunity and meeting dates and times.

Drinking Water Sources

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Rio Vista's water comes from the Upper Santa Cruz Basin and the Santa Cruz River watershed.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Our water source(s):	One Groundwater Well # 55-623383
	One Interconnect # 001-10112 City of Tucson

Consecutive Connection Sources

A public water system that receives some or all of its finished water from one or more wholesale systems by means of a direct connection or through the distribution system of one or more consecutive systems. Systems that purchase water from another system report regulated contaminants detected from the source water supply in a separate table.

PWS # AZ04-10-112 City of Tucson provides us a consecutive connection source of water.

Drinking Water Contaminants

Microbial Contaminants: Such as viruses and bacteriaOrgthat may come from sewage treatment plants, septicvolasystems, agricultural livestock operations, and wildlifer

Inorganic Contaminants: Such as salts and metals that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming

Pesticides and Herbicides: Such as agriculture, urban storm water runoff, and residential uses that may come from a variety of sources

Organic Chemical Contaminants: Such as synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

Radioactive Contaminants: That can be naturally occurring or be the result of oil and gas production and mining activities.

Vulnerable Population

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and microbiological contaminants call the EPA *Safe Drinking Water Hotline* at 1-800-426-4791.

Source Water Assessment

• Based on the information currently available on the hydrogeologic settings of and the adjacent land uses that are in the specified proximity of the drinking water source(s) of this public water system, the department has given a low risk designation for the degree to which this public water system drinking water source(s) are protected. A low risk designation indicates that most source water protection measures are either already implemented, or the hydrogeology is such that the source water protection measures will have little impact on protection.

Further source water assessment documentation can be obtained by contacting ADEQ.

Definitions

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water

Level 1 Assessment: A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria was present

Level 2 Assessment: A very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria was present

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment, or other requirements

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water

Maximum Contaminant Level Goal MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health

Maximum Residual Disinfectant Level (MRDL): The level of disinfectant added for water treatment that may not be exceeded at the consumer's tap

Maximum Residual Disinfectant Level Goal (MRDLG): The level of disinfectant added for treatment at which no known or anticipated adverse effect on health of persons would occur

Minimum Reporting Limit (MRL): The smallest measured concentration of a substance that can be reliably measured by a given analytical method

Millirems per year (MREM): A measure of radiation absorbed by the body

Not Applicable (NA): Sampling was not completed by regulation or was not required

Not Detected (ND or <): Not detectable at reporting limit

Nephelometric Turbidity Units (NTU): A measure of water clarity

Million fibers per liter (MFL)

Picocuries per liter (pCi/L): Measure of the radioactivity in water

ppm: Parts per million or Milligrams per liter (mg/L)

ppb: Parts per billion or Micrograms per liter (µg/L)

ppt: Parts per trillion or Nanograms per liter (ng/L) **ppg**: Parts per quadrillion or

Picograms per liter (pg/L)

ppm x 1000 = ppb ppb x 1000 = ppt ppt x 1000 = ppq

Lead Informational Statement:

Lead, in drinking water, is primarily from materials and components associated with service lines and home plumbing. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. **Rio Vista Mobile Home Park** is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Water Quality Data – Regulated Contaminants

Inorganic Chemicals (IOC)	MCL Violation Y or N	Running Annual Average (RAA) <u>OR</u> Highest Level Detected	Range of All Samples (Low-High)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination
Nitrate ² (ppm)	N	3.3	3.3	10	10	12/19	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm)	N	28	28	N/A	N/A	12/18	Erosion of natural deposits

Lead & Copper	MCL Violation Y or N	90 th Percentile	Number of Samples Exceeds AL	AL	ALG	Sample Month & Year	Likely Source of Contamination
Copper (ppm)	Ν	.056	0	1.3	1.3	6/18	Corrosion of household plumbing systems; erosion of natural deposits

Synthetic Organic Chemicals (SOC)	MCL Violation Y or N	Running Annual Average (RAA) <u>OR</u> Highest Level Detected	Range of All Samples (Low-High)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination
Simazine (ppb)	Ν	.07	.07	4	4	12/18	Herbicide runoff

Radionuclides	MCL Violation Y or N	Running Annual Average (RAA) <u>OR</u> Highest Level Detected	Range of All Samples (Low-High)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination
Alpha Emitters (pCi/L)	Ν	4.4	4.4	15	0	12/17	Erosion of natural deposits

Assessments for the Revised Total Coliform Rule (RTCR)

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. If coliform is found, then the system is responsible to look for potential problems in water treatment or distribution. When this occurs, the water system is required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

• During the past year, we were required to conduct **[1]** Level 2 assessment(s). **[1]** Level 2 assessment(s) were completed. In addition, we were required to take **[1]** corrective actions and we completed **[1]** of these actions.

Failure to Conduct Assessments for the Revised Total Coliform Rule

Contaminant Name	TT Violation Y or N	TT Requirement
Total Coliform	Ν	 We were required to conduct an assessment of our system due to the following: More than 1 positive sample per period (if the number of samples are less than 40)

2019 Annual Water Quality Data - City of Tucson

System PWS AZ0410112

Detected Contaminants Table

Contaminant	Sample Year	Maximum Result	Range	MCL	MCLG	Major Sources of Contaminant
Disinfection By-Products Haloacetic Acids (HAA5) HAA5 Locational Running Annual Average (LRAA)	19	2.0 ppb	< 2. 0 – 2.0 ppb	60 ppb	None	By-product of chlorination
Total Trihalomethanes (TTHM) TTHM Locational Running Annual Average (LRAA)	19	15 ppb	0.5 – 15 ppb	80 ppb	None	By-product of chlorination
	15	io hhn	0.0 – 10 pp	on hhn	None	by-product of chionnation
Inorganics Arsenic	19	7.6 ppb	< 1.0 – 7.6 ppb	10 ppb	0 ppb	Natural deposits, runoffs
Barium	19	0.15 ppm	< 0.02 – 0.15ppm	2 ppm	2 ppm	Natural deposits, industrial
Fluoride	19	1.11 ppm	< 0.02 – 0.15ppm	4 ppm	4 ppm	Natural deposits
Nitrate (as N)	19	6.41 ppm	< 0.25 – 6.41	10 ppm	10 ppm	Natural deposits, septic tanks, agriculture, sewage
Selenium	19	5.2 ppb	< 1.0 – 5.2 ppb	50 ppb	50 ppb	Discharge from petroleum, metal refineries, mines, erosion of natural deposits
Sodium	19	72 ppm	13 – 72 ppm	None	None	Natural deposits
Synthetic Organics						
Atrazine	19	0.11 ppb	< 0.05 – 0.11 ppb	3 ppb	3 ppb	Herbicide runoffs
Bis(2-ethyl)phthalate (DEHP)	19	1.0 ppb	< 0.6 – 1.0ppb	6 ppb	0 ppb	Discharge from rubber & chemical factories
Pentachlorophenol	19	0.12 ppb	< 0.04 – 0.12 ppb	1 ppb	0 ppb	Discharge from wood preserving factories
Simazine	17 - 19	0.08 ppb	< 0.05 – 0.08 ppb	4 ppb	4 ppb	Herbicide runoffs
Volatile Organics Trichloroethene (TCE)	19	0.9 ppb	< 0.5 – 0.9 ppb	5.0 ppb	0 ppb	Metal degreasing sites
Radioactive Chemicals						
Alpha Emitters	19	1.3 Global pCi/L	0.2 – 1.3 pCi/L	15 pCi/L	0 pCi/L	Natural deposits
Combined Radium	16 - 19	1.3 Global pCi/L	< 0.3 – 1.3 pCi/L	5.0 pCi/L	0 pCi/L	Natural deposits
Uranium	19	7.5 ppb	< 0.6 – 7.5 ppb	30 ppb	0 ppb	Natural deposits
Contaminant	Year Sampled	No. of Samples above Action Level	90th Percentile Value	Action Level	Action Level Goa	Major Sources al of Contaminant
Lead	2017	One	1.1 ppb	15 ppb	0 ppb	Corrosion of household plumbing systems, erosion of natural deposits
Copper	2017	None	0.131 ppm	1.3 ppm	1.3 ppm	Corrosion of household plumbing systems, erosion of natural deposits
Disinfectant	Year Sampled	Annual Average	Monthly Average Range	MRDL	MRDLG	Source
Chlorine	2019	0.94 ppm	0.89–1.0 ppm	4 ppm	4 ppm	Disinfection additive used to control microbes
Contaminant	Month Detected	Positive Samples for the Month	Total Samples for the Month	MCL	MCLG	Source
Total Coliform	Aug & Nov 2019	0.4% or 1 sample	250	< 5% of Samples	0	Naturally present in the environment to control microbes

Unregulated Contaminants Table

UCMR Contaminant	Average	Range	Explanation
Germanium	0.35 ppb	< 0.03 – 0.93 ppb	Naturally occurring, byproduct of zinc ore processing, used in infrared & fiber optic
Manganese	2.66 ppb	< 0.4 –120 ppb	Naturally occurring, in steel production, fertilizers
0-toluidine	0.007 ppb	< 0.007 – 0.031 ppb	Used in production of dyes, rubber, pharmaceuticals and pesticides
HAA5	1.66 ppb	0. 52 – 7.7 ppb	By-product of drinking water disinfection
HAA6Br	3.15 ppb	0.52 – 9.1 ppb	By-product of drinking water disinfection
HAA9	3.79 ppb	0.52 – 15.7 ppb	By-product of drinking water disinfection
Bromide	106 ppb	<5 – 720 ppb	Recovered from naturally occurring low grade deposits, mined either from a primary deposit or by-product of copper processing
Total Organic Carbon	317 ppb	< 300 – 1,500 ppb	Used as a non-specific indicator of water quality or cleanliness of pharmaceutical equipment

HAA5: (dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloro acetic acid, trichloroacetic acid);

HAA6Br: (bromochloroacetic acid, bromodichloroacetic acid, dibromoacetic acid, chlorodibromoacetic acid, monobromoacetic acid, tribromoacetic acid;

HAA9: (bromochloroacetic acid, bromodichloroacetic acid, chlorodibromoacetic acid, dibromoacetic acid, dichoroacetic acid, monobromoacetic acid, monochloroacetic acid, trichloroacetic acid).